3 research outputs found

    Classification of human hand movements using surface EMG for myoelectric control

    Get PDF
    © Springer International Publishing AG 2017.Surface electromyogram (sEMG) is a bioelectric signal that can be captured non-invasively by placing electrodes on the human skin. The sEMG is capable of representing the action intent of nearby muscles. The research of myoelectric control using sEMG has been primarily driven by the potential to create humanmachine interfaces which respond to users intentions intuitively. However, it is one of the major gaps between research and commercial applications that there are rarely robust simultaneous control schemes. This paper proposes one classification method and a potential real-time control scheme. Four machine learning classifiers have been tested and compared to find the best configuration for different potential applications, and non-negative matrix factorisation has been used as a pre-processing tool for performance improvement. This control scheme achieves its highest accuracy when it is adapted to a single user at a time. It can identify intact subjects hand movements with above 98% precision and 91% upwards for amputees but takes double the amount of time for decision-making

    Self-adaptive logit balancing for deep neural network robustness: Defence and detection of adversarial attacks

    No full text
    With the widespread applications of Deep Neural Networks (DNNs), the safety of DNNs has become a significant issue. The vulnerability of the neural networks against adversarial examples deepens concerns about the safety of DNNs applications. This paper proposed a novel defence method to improve the adversarial robustness of DNN classifiers without using adversarial training. This method introduces two new loss functions. First, a zero-cross-entropy loss is used to punish overconfidence and find the appropriate confidence for different instances. Second, a logit balancing loss is proposed to protect DNNs from non-targeted attacks by regularising incorrect classes’ logits distribution. This method achieved competitive adversarial robustness compared to advanced adversarial training methods. Meanwhile, a novel robustness diagram is proposed to analyse, interpret and visualise the robustness of DNN classifiers against adversarial attacks. Furthermore, a Log-Softmax-pattern-based adversarial attack detection method is proposed. This detection method can distinguish clean inputs and multiple adversarial attacks via one multi-classification MLP. In particular, it is state-of-the-art in identifying white-box gradient-based attacks; it achieved at least 95.5% accuracy for classifying four white-box gradient-based attacks with maximum 0.1% false positive ratio
    corecore